A facile synthesis of 1,2-dihydroquinazolin-4(3*H*)-ones with the aid of a low-valent titanium reagent[†] Daqing Shi^{a,b,c,*}, Juxian Wang^a, Liangce Rong^a, Qiya Zhuang^{a,b}, Shujiang Tu^{a,b} and Hongwen Hu^c

^aDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221009, P. R. China ^bThe Key Laboratory of Biotechnology on Medical Plant, Jiangsu, Xuzhou 221009, P. R.China ^cDepartment of Chemistry, Naniing University, Naniing 210093, P. R. China

A short and facile synthesis of a series of 1,2-dihydroquiazolin-4(3*H*)-ones was accomplished in good yields via the novel reductive cyclisation of *o*-nitrobenzamides with aldehydes or ketones promoted by the TiCl₄/Sm system. Structures were established on the basis of elemental analysis, IR, ¹H NMR and confirmed by a single-crystal X-ray diffraction analysis. The advantages of our method are easily accessible starting materials, convenient manipulation and moderate to high yields.

Keywords: quinazolin-4(3H)-one, low-valent titanium, o-nitrobenzamide, aldehyde, ketone

Low-valent titanium reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis. Many other functional groups can also be coupled.¹ Recently, we have reported that the cyclodimerisation of α , β -unsaturated ketones and α , β -unsaturated nitrile compounds promoted by this reagent, yielded functional cyclopentanes² and cyclopentenes³ respectively.

Quinazolin-4(3*H*)-ones are in demand because of their potential biological and pharmaceutical activities⁴. Unfortunately, synthetic methods for the elaboration of this bicyclic system are not general in scope, and involve multistep, and often low-yielding, reaction sequences. The main synthetic approaches to such compounds consist of preliminary amidation of 2-aminobenzonitrile, 2-aminobenzotic acid or ethyl 2-aminobenzate⁵ and the aza-Wittig reactions of α -azido-substituted aromatic imides.⁶ Different one-pot syntheses have been described, but the condensation of 2-aminobenzoic acid with amides or nitriles requires either high temperature or must be affected in a sealed tube at 200°C.⁷ Here we wish to describe a new method induced by the TiCl₄/Sm system for the preparation of 1,2-dihydroquinazolin-4(3*H*)-ones using *o*-nitrobenzamides as the starting material.

When *o*-nitrobenzamides **1** and aromatic aldehydes or ketones **2** were treated with low-valent titanium, prepared from titanium tetrachloride and Sm powder in anhydrous THF, the reductive cyclisation products 1,2-dihydroquinazolin-4(3H)-ones **3** were obtained in good yields (Scheme 1). The results are summarised in Table 1.

On the other hand, the reaction of *o*-nitrobenzamide 1 and the cyclic ketone 4 with the same reagent afforded 2,2-polymethylene-1,2- dihydroquinazolin-4(3H)-ones 5 (Scheme 2) and the results are summarised in Table 2. However, *o*-nitrobenzamide failed to react with acetophenone or

^{*} To receive any correspondence.

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

Table 1	The	synthesis	of	1,2-dihydroquinazolin-4(3H)-ones
promoted	l by T	ïCl₄/Sm.		

Entry	Compound	Х	R ₁	R ₂	lsolated Yield/%	
1	3a	Н	4-CIC ₆ H₄	Н	91	
2	3b	Н	3,4-(OCH ₃) ₂ C ₆ H ₃	Н	92	
3	3c	Н	3,4-OCH 2OC6H3	Н	93	
4	3d	Н	C ₆ H ₅	Н	83	
5	3e	Н	4-CH ₃ C ₆ H ₄	Н	91	
6	3f	CI	4-CIC ₆ H ₄	Н	82	
7	3g	CI	4-FC ₆ H ₄	Н	79	
8	3h	CI	4-CH ₃ C ₆ H ₄	Н	85	
9	3i	CI	4-CH ₃ OC ₆ H ₄	Н	87	
10	3j	Н	CH ₃	CH ₃	88	
11	3k	Н	C_2H_5	CH ₃	78	
12	31	Н	C_2H_5	C_2H_5	86	
13	3m	CI	CH ₃	CH₃	79	
14	3n	CI	C_2H_5	CH ₃	74	
15	30	CI	C ₂ H ₅	C_2H_5	71	

Scheme Z

 Table 2
 The reductive cyclisation of o-nitrobenzamides and cyclic ketones

Entry	Compound	Х	n	Isolated yield/%	
1	5a	Н	1	86	
2	5b	CI	1	91	
3	5c	Н	2	72	
4	5d	CI	2	89	

1-tetralone to give the same products under the same reaction conditions.

The structures of **3** and **5** were confirmed by IR, ¹H NMR and elemental analysis. In these structures, **5c** was further confirmed by X-ray analysis.

In summary, a series of 1,2-dihydro- quinazolin-4(3*H*)-ones were synthesized via reductive cyclisation induced by the $TiCl_4/Sm$ system of *o*-nitrobenzamides with aldehydes or ketones. The advantages of our method are easily accessible starting materials, convenient manipulation and moderate to high yields.

Experimental

Tetrahydrofuran (THF) was distilled from sodium-benzophenone immediately prior to use. All reactions were performed under a dinitrogen atmosphere. Melting points were uncorrected. ¹H NMR spectra were obtained for solution in CDCl₃ with Me₄Si as internal standard using an Inova-400 spectrometer. Microanalyses were carried out using a Perkin-Elmer 2400 II analyzer. IR spectra were recorded on an FTIR-8101 spectrometer in KBr. X-ray diffraction was recorded on a Siemens P4 diffractometer.

General procedure for the synthesis of 1, 2-Dihydroquinazolin-4(3H)-ones (3 and 5): TiCl₄ (1.1 ml, 10 mmol) was added dropwise using a syringe to a stirred suspension of samariam dust (1.5 g, 10 mmol) in freshly distilled anhydrous THF (15 ml) at room temperature under a dry dinitrogen atmosphere. After completion of the addition, the mixture was refluxed for 2 h. The suspension of the low-valence titanium reagent formed was cooled to room temperature and a solution of o-nitrobenzamide (3 mmol) and aromatic aldehydes or ketones or cyclic ketone (3 mmol) in THF (10 ml) was added dropwise. The mixture was refluxed 5 h under N₂ (the reaction was monitored by TLC). The reaction mixture was quenched with 10% HCl (50 ml) and extracted with CHCl₃ (3×50ml). The combined extracts were washed with water (3×50 ml) and dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the crude products **3a–i** and **5a–d** were purified by recrystallisation from 95% ethanol.

2-(4-chlorophenyl)-1, 2-dihydroquinazolin-4(3H)-one (**3a**): M.p. 202–204 °C; ¹H NMR (CDCl₃) δ : 5.86 (s, 1H, NH), 5.90 (s, 1H, C²-H), 6.68 (d, J=8.0 Hz, 1H, ArH), 6.90–6.94 (m, 1H, ArH), 7.33–7.37 (m, 1H, ArH), 7.34 (d, J=8.0 Hz, 2H, ArH), 7.55 (d, J=8.0 Hz, 2H, ArH), 7.94 (d, J=8.0 Hz, 1H, ArH); IR (KBr) v: 3309, 3192, 1655, 1609, 1509, 1484, 1434, 1384, 1325, 1292, 1168, 1152, 1134, 1092, 1016, 948, 913, 862, 836, 799, 752, 700 cm⁻¹. Anal. calcd for C₁₄H₁₁ClN₂O: C 65.00, H 4.29, N 10.83; found C 65.23, H 4.07, N 10.62.

2-(3,4-dimethoxyphenyl)-1, 2-dihydroquinazolin-4(3H)-one (**3b**): M.p. 214–216 °C, ¹H NMR (CDCl₃) δ : 3.92 (s, 6H, 2×CH₃O), 5.79 (s, 1H, NH), 5.86 (s, 1H, C²-H), 6.68 (d, J=8.0 Hz, 1H, ArH), 6.87–6.93 (m, 2H, ArH), 7.05 (d, J=8.0 Hz, 1H, ArH), 7.21 (s, 1H, ArH), 7.33–7.35 (m, 1H, ArH), 7.95 (d, J=7.2 Hz, 1H, ArH); IR (KBr) v: 3356, 3181, 3076, 2960, 1656, 1613, 1504, 1460, 1423, 1378, 1304, 1261, 1230, 1186, 1140, 1023, 856, 823, 760 cm⁻¹. Anal. calcd for C₁₆H₁₆N₂O₃: C 67.59, H 5.67, N 9.85; found C 67.81, H 5.40, N 10.03.

2-(3,4-dimethylenedioxyphenyl)-1, 2-dihydroquinazolin-4(3H)-one (**3c**): M.p. 199–201 °C; ¹H NMR (CDCl₃) δ : 5.80 (s, 1H, NH), 5.82 (s, 1H, C²-H), 6.02 (s, 2H, OCH₂O), 6.67 (d, *J*=8.4 Hz, 1H, ArH), 6.83 (d, *J*=8.4 Hz, 1H, ArH), 6.88–6.92 (m, 1H, ArH), 6.99 (d, *J*=7.6 Hz, 1H, ArH), 7.15 (s, 1H, ArH), 7.32–7.36 (m, 1H, ArH), 7.94 (d, *J*=7.2 Hz, 1H, ArH); IR (KBr) v: 3282, 3181, 1654, 1612, 1486, 1446, 1388, 1327, 1297, 1248, 1187, 1164, 1149, 1121, 1105, 1036, 930, 864, 786, 754 cm⁻¹. Anal. calcd for C₁₅H₁₂N₂O₃: C 67.16, H 4.51, N 10.44; found C 67.33, H 4.29, N 10.52.

2-phenyl-1, 2-dihydroquinazolin-4(3H)-one (**3d**): M.p. 215–216 °C; ¹H NMR (CDCl₃) & 5.81 (s, 1H, NH), 5.91 (s, 1H, C²-H), 6.68 (d, J=8.4 Hz, 1H, ArH), 6.89–6.93 (m, 1H, ArH), 7.32–7.36 (m, 1H, ArH), 7.45–7.46 (m, 3H, ArH), 7.59–7.61 (m, 2H, ArH), 7.95 (d, J=7.6 Hz, 1H, ArH); IR (KBr) v: 3303, 3174, 1654, 1613, 1510, 1392, 1300, 1149, 810, 748, 699 cm⁻¹. Anal. calcd for C₁₄H₁₂N₂O: C 74.98, H 5.39, N 12.49; found C 75.13, H 5.23, N 12.37.

2-(methylphenyl)-1, 2-dihydroquinazolin-4(3H)-one (**3e**): M.p. 231–233 °C; ¹H NMR (CDCl₃) δ : 2.40 (s, 3H, CH3), 5.78 (s, 1H, NH), 5.87 (s, 1H, C2-H), 6.67 (d, J=8.4 Hz, 1H, ArH), 6.88–6.92 (m, 1H, ArH), 7.24–7.26 (m, 2H, ArH), 7.32–7.35 (m, 1H, ArH), 7.48 (d, J=7.2 Hz, 2H, ArH), 7.95 (d, J=7.2 Hz, 1H, ArH); IR (KBr) v: 3312, 3194, 1657, 1611, 1509, 1486, 1438, 1385, 1328, 1297, 1151, 1133, 1022, 948, 909,859, 800, 751 cm⁻¹. Anal. calcd for C₁₅H₁₄N₂O: C 75.61, H 5.92, N 11.76; found C 75.83, H 5.78, N 11.90.

7-chloro-2-(4-chlorophenyl)-1, 2-dihydroquinazolin-4(3H)-one (**3f**): M.p. 236–237 °C; ¹H NMR (CDCl₃) & 5.83 (s, 1H, NH), 5.90 (s, 1H, C²-H), 6.68 (s, 1H, ArH), 6.88 (d, *J*=8.8 Hz, 1H, ArH), 7.44 (d, *J*=8.0Hz, 2H, ArH), 7.53 (d, *J*=8.0 Hz, 2H, ArH), 7.86 (d, *J*=8.0 Hz, 1H, ArH); IR (KBr) v: 3250, 3181, 1649, 1609, 1471, 1322, 1301, 1248, 1186, 1129, 1090, 1007, 875, 833, 803 cm⁻¹. Anal. calcd for $C_{14}H_{10}Cl_2N_2O$: C 57.36, H 3.44, N 9.56; found C 57.51, H 3.38, N 9.47.

7-chloro-2-(4-fluophenyl)-1, 2-dihydroquinazolin-4(3H)-one (**3g**): M.p. 179–180 °C; ¹H NMR (CDCl₃) & 5.88 (s, 1H, NH), 5.90 (s, 1H, C²-H), 6.68 (s, 1H, ArH), 6.87 (d, *J*=8.0 Hz, 1H, ArH), 7.12–7.16 (m, 2H, ArH), 7.56–7.59 (m, 2H, ArH), 7.85 (d, *J*=8.0 Hz, 1H, ArH); IR (KBr) v: 3251, 3181, 1649, 1610, 1508, 1471, 1322, 1301, 1229, 1158, 1129, 1091, 1010, 874, 846, 690 cm⁻¹. Anal. calcd for $C_{14}H_{10}ClFN_2O$: C 60.77, H 3.64, N 10.12; found C 60.91, H 3.57, N 10.03.

7-chloro-2-(4-methylphenyl)-1,2-dihydroquinazolin-4(3H)-one (**3h**): M.p. 242–244 °C; ¹H NMR (CDCl₃) & 2.40 (s, 3H, CH3), 5.78 (s, 1H, NH), 5.87 (s, 1H, C²-H), 6.67 (s, 1H, ArH), 6.86 (d, J=8.8 Hz, 1H, ArH), 7.25–7.26 (m, 2H, ArH), 7.46 (d, J=8.0 Hz, 2H, ArH), 7.87 (d, J=8.8 Hz, 1H, ArH); IR (KBr) v: 3294, 3181, 1654, 1606, 1510, 1471, 1432, 1370, 1297, 1172, 1133, 1079, 1014, 922, 858, 816, 748, 721, 678 cm⁻¹. Anal. calcd for $C_{15}H_{13}ClN_2O$: C 66.06, H 4.80, N 10.27; found C 66.31, H 4.63, N 10.47.

7-chloro-2-(4-methoxyphenyl)-1,2-dihydroquinazolin-4(3H)-one (**3i**): M.p. 215–216 °C; ¹H NMR (CDCl₃) δ : 3.85 (s, 3H, OCH₃), 5.77 (s, 1H, NH), 5.85 (s, 1H, C²-H), 6.67 (s, 1H, ArH), 6.86 (d, *J*=8.0 Hz, 1H, ArH), 6.96 (d, *J*=8.8 Hz, 2H, ArH), 7.50 (d, *J*=8.8 Hz, 2H, ArH), 7.86 (d, *J*=8.0 Hz, 1H, ArH); IR (KBr) v: 3295, 3185, 1654, 1610, 1510, 1480, 1427, 1369, 1294, 1254, 1171, 1135, 1110, 1079, 1038, 923, 863, 834, 782, 748, 680 cm⁻¹. Anal. calcd for C₁₅H₁₃ClN₂O₂: C 62.40, H 4.54, N 9.70; found C 62.63, H 4.38, N 9.63.

2,2-dimethyl-1, 2-dihydroquinazolin-4(3H)-one (**3j**): M.p. 185–186 °C; ¹H NMR (CDCl₃) δ : 1.57 (s, 6H, 2×CH₃), 6.30 (s, 1H, NH), 6.63 (d, J=8.0 Hz, 1H, ArH), 6.82–6.85 (m, 1H, ArH), 7.29–7.33 (m, 1H, ArH), 7.89 (d, J=8.0 Hz, 1H, ArH); IR (KBr) v: 3260, 3180, 2968, 1634, 1608, 1520, 1486, 1424, 1392, 1362, 1334, 1279, 1182, 753 cm⁻¹. Anal. calcd for C₁₀H₁₂N₂O: C 68.16, H 6.86, N 15.90; found C 68.30, H 6.63, N 15.73.

2-methyl-2-ethyl-1, 2-dihydroquinazolin-4(3H)-one (**3k**): M.p. 184–185 °C; ¹H NMR (CDCl₃) δ : 0.99 (t, *J*=8.0 Hz, 3H, CH₃), 1.50 (s, 3H, CH₃), 1.81 (q, *J*=8.0 Hz, 2H, CH₂), 6.16(s, 1H, NH), 6.62 (d, *J*=8.0 Hz, 1H, ArH), 6.79–6.83 (m, 1H, ArH), 7.27–7.32 (m, 1H, ArH), 7.87 (d, *J*=8.0 Hz, 1H, ArH); IR (KBr) v: 3279, 3178, 2974, 1643, 1609, 1512, 1489, 1430, 1395, 1331, 1275, 1182, 1153, 758 cm⁻¹. Anal. calcd for C₁₁H₁₄N₂O: C 69.45, H 7.42, N 14.73; found C 69.61, H 7.38, N 14.54.

2,2-diethyl-1,2-dihydroquinazolin-4(3H)-one (**3**): M.p. 190–191 °C; ¹H NMR (CDCl₃) δ : 0.97 (t, J=8.0 Hz, 6H, 2×CH₃), 1,76 (q, J=8.0 Hz, 4H, 2×CH₂), 5.98 (s, 1H, NH), 6.60 (d, J=8.0 Hz, 1H, ArH), 6.76–6.80 (m, 1H, ArH), 7.27–7.30 (m, 1H, ArH), 7.85 (d, J=8.0 Hz, 1H, ArH); IR (KBr) ν : 3320, 3175, 2974, 1646, 1607, 1510, 1489, 1463, 1429, 1395, 1329, 1274, 1150, 758 cm⁻¹. Anal. calcd for C₁₂H₁₆N₂O: C 70.56, H 7.90, N 13.71; found C 70.81, H 7.68, N 13.59.

7-chloro-2,2-dimethyl-1,2-dihydroquinazolin-4(3H)-one (3m): M.p. 243–244 °C; ¹H NMR (CDCl₃) δ : 1.58 (s, 6H, 2×CH₃), 6.21 (s, 1H, NH), 6.64 (s, 1H, ArH), 6.80 (d, J=8.8 Hz, 1H, ArH), 7.81 (d, J=8.8 Hz, 1H, ArH); IR (KBr) ν : 3291, 3178, 2975, 1643, 1607, 1510, 1480, 1458, 1416, 1387, 1363, 1276, 1244, 1178, 1078, 984, 857, 777 cm⁻¹. Anal. calcd for C₁₀H₁₁ClN₂O: C 57.01, H 5.26, N 13.30; found C 57.27, H 5.14, N 13.18.

7-chloro-2-methyl-2-ethyl-1,2-dihydroquinazolin-4(3H)-one (**3n**): M.p. 173–174 °C; ¹H NMR (CDCl₃) & 0.98 (t, *J*=8.0 Hz, 3H, CH₃), 1.50 (s, 3H, CH₃), 1.79 (q, *J*=8.0 Hz, 2H, CH₂), 6.29 (s, 1H, ArH), 6.75 (d, *J*=8.0 Hz, 1H, ArH), 6.96 (s, 1H, NH), 7.78 (d, *J*=8.0 Hz, 1H, ArH); IR (KBr) v: 3304, 3191, 2974, 1642, 1608, 1510, 1480, 1454, 1419, 1320, 1276, 1156, 1079, 896, 854, 778 cm⁻¹. Anal. calcd for C₁₁H₁₃ClN₂O: C 58.80, H 5.83, N 12.47; found C 58.94, H 5.62, N 12.33.

7-chloro-2,2-diethyl-1,2-dihydroquinazolin-4(3H)-one (**30**): M.p. 164–166° C; ¹H NMR (CDCl₃) δ : 0.96 (t, *J*=8.0 Hz, 6H, 2×CH₃), 1.75 (q, *J*=8.0 Hz, 4H, 2×CH₂), 6.59 (s, 1H, NH), 6.61 (s, 1H, ArH), 6.71 (d, *J*=8.0 Hz, 1H, ArH), 7.76 (d, *J*=8.0 Hz, 1H, ArH); IR (KBr) *v*: 3286, 3215, 2967, 1644, 1608, 1513, 1483, 1461, 1420, 1363, 1324, 1276, 1175, 1155, 1082, 986, 912, 874, 774 cm⁻¹. Anal. calcd for C₁₂H₁₅ClN₂O: C 60.38, H 6.33, N 11.74; found C 60.56, H 6.18, N 11.59.

2,2-tetramethylene-1,2-dihydroquinazolin-4(3H)-one (**5a**): M.p. 251–253 °C; ¹H NMR (CDCl₃) δ : 1.79–1.80 (m, 4H, CH₂CH₂), 1.90–1.97 (m, 4H, 2×CH₂), 6.17 (s, 1H, NH), 6.65 (d, *J*=8.0 Hz, 1H, ArH), 6.85 (t, *J*=7.2 Hz, 1H, ArH), 7.31 (t, *J*=7.2 Hz, 1H, ArH), 7.88 (d, *J*=8.0 Hz, 1H, ArH); IR (KBr) v: 3292, 3159, 2972, 1638, 1606, 1517, 1485, 1431, 1385, 1334, 1270, 1149, 1088, 1049, 954, 849, 803, 781, 753 cm⁻¹. Anal. calcd for C₁₂H₁₄N₂O: C 71.26, H 6.98, N 13.85; found C 71.48, H 6.78, N 13.72.

7-chloro-2,2-tetramethylene-1,2-dihydroquinazolin-4(3H)-one (**5b**): M.p. 244–245 °C; ¹H NMR (CDCl₃) & 1.62–1.80 (m, 4H, 2×CH₂), 1.81–1.96 (m, 4H, 2×CH₂), 6.23 (s, 1H, NH), 6.65 (s, 1H, ArH), 6.80 (d, J=8.8 Hz, 1H, ArH), 7.80 (d, J=8.8 Hz, 1H, ArH); IR (KBr) v: 3260, 3189, 1650, 1608, 1519, 1480, 1421, 1361, 1318, 1277, 1154, 1078, 1044, 936, 899, 855, 768 cm⁻¹. Anal. calcd for C₁₂H₁₃ClN₂O: C 60.89, H 5.54, N11.84; found C 61.03, H 5.36, N 11.63.

2,2-pentamethylene-1,2-dihydroquinazolin-4(3H)-one (**5c**): M.p. 224–225 °C; ¹H NMR (CDCl₃) δ : 1.47–1.48 (m, 2H, CH₂), 1.53–1.60 (m, 4H, 2×CH₂), 1.80–1.84 (m, 4H, 2×CH₂), 6.19 (s, 1H, NH), 6.65 (d, J=8.0 Hz, 1H, ArH), 6.82 (t, J=7.2 Hz, 1H, ArH), 7.30 (t, J=7.2 Hz, 1H, ArH), 7.87 (d, J=8.0 Hz, 1H, ArH); IR (KBr) v: 3367, 3170, 2923, 1651, 1612, 1507, 1484, 1417, 1382, 1323, 1269, 1210, 1178, 1145, 1093, 1040, 1004, 951, 914, 855, 802, 760 cm⁻¹. Anal. calcd for C₁₃H₁₆N₂O: C 72.19, H 7.46, N 12.95; found C 72.37, H 7.23, N 13.09.

7-chloro-2,2-pentamethylene-1,2-dihydroquinazolin-4(3H)-one (5d): M.p. 221–222 °C; ¹H NMR (CDCl₃) δ: 1.43–1.52 (m, 2H, CH₂), 1.52–1.68 (m, 4H, 2×CH₂), 1.74–1.90 (m, 4H, 2×CH₂), 6.17 (s, 1H, NH), 6.66 (s, 1H, ArH), 6.77 (d, *J*=8.8 Hz, 1H, ArH), 7.78 (d, *J*=8.8 Hz, 1H, ArH); IR (KBr) v: 3362, 3249, 1699, 1600, 1576, 1507, 1464, 1336, 1152, 1044, 890, 751 cm⁻¹. Anal. calcd for C₁₃H₁₅ClN₂O: C 62.28, H 6.03, N 11.17; found C 62.51, H 5.92, N 11.34.

Crystal data and structure refinement for 5c: Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of 5c. $C_{13}H_{16}N_2O$, M = 216.28, monoclinic, space group P2(1)/n, a = 10.387(1), b = 10.954(2), c = 10.827(2) Å, $\beta = 110.77(1)^\circ$, V = 1151.8(4) Å³, Z = 4, Dc = 1.247 gcm⁻³, F(000) = 464, μ (MoK α) = 0.080 mm⁻¹, colourless block crystals, crystal size 0.52×0.48×0.44 mm.

Intensity data were collected at 296 K on a Siemens P4 diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å): 2033 independent reflections were collected using ω scan mode in the range of 2.34° < $0 < 25.00^\circ$, of which 1575 intensity data with [$I > 2\sigma(I)$] were observed. The corrections for Lp factors were applied. The structure was solved by direct methods and expanded using Fourier techniques. Some non-hydrogen atoms were refined anisotropically, while the rest were refined isotropically. Hydrogen atoms were induded in F value calculation but fixed during the structure refinement. A full-matrix least-squares refinement gave final R = 0.0449 and wR = 0.1217 with $w = 1/[\sigma^2 Fo^2 + (0.0631P)^2 + 0.2555P]$, S = 1.087. The maximum peak in the difference Fourier map is 0.296 eÅ⁻³ and the minimum peak is -0.310 eÅ⁻³. In the final

circle refinement the largest parameter shifts $(\Delta/\sigma)_{max}$ is 0.000. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-201813.

We thank the Surpassing Project of Jiangsu Province, the Natural Science Foundation of the Education Committee of Jiangsu Province (00KJB150008) and the Key Laboratory of Organic Synthesis, Suzhou University for financial support.

Received 20 May 2003; accepted 26 August 2003 Paper 03/1924

References

- (a) J.E. McMurry, Acc. Chem. Res. 1974, 7, 281; (b) J.E. McMurry, Acc. Chem. Res. 1983, 16, 405; (c) J.E. McMurry, Chem. Rev. 1989, 89, 1513; (d) D. Lenoir, Synthesis 1989, 883; (e) A. Fiirstner and B. Bogdanovi, Angew. Chem., Int. Ed. 1996, 35, 2443; (f) D.Q. Shi, J.X. Chen, W.Y. Chai, W.X. Chen and T.Y. Kao, Tetrahedron Lett. 1993, 34, 2963.
- 2 L.H. Zhou, D.Q. Shi, Y. Gao, W.B. Shen, G.Y. Dai and W.X. Chen, *Tetrahedron Lett.* **1997**, 38, 2729.
- 3 L.H.Zhou, S.J. Tu, D.Q. Shi, G.Y. Dai and W.X. Chen, *Synthesis*, **1998**, 851.
- 4 (a) D. Gravier, J.P. Dupin, F. Casadebaig, G. Hou, M. Boisseau and H. Bernard, *Pharmazie*, **1992**, 47, 91; (b) B.R. Baker, R.E. Schaub, J.P. Joseph, F.J. McEvoy and J.H. Williams, *J.Org. Chem.* **1953**, 18, 133; (c) J.F. Wolfe, T.L. Rathman, M.C. Sleevi, J.A. Campbell and T.D. Greenwood, *J. Med. Chem.* **1990**, 33, 161.
- 5 (a) M.T. Bogert and W.F. Hand, J. Am. Chem. Soc. 1902, 24, 1032; (b) C. Bogentoft, L. Kronberg and B. Danielsson, Acta. Pharm. Suec. 1969, 6, 485; (c) H. Stephen and G. Wadge, J. Chem. Soc. 1956, 4420.
- 6 (a) H. Takeuchi, S. Haguvara and S. Eguchi, *Tetrahedron*, 1989, 45, 6375; (b) H. Takeuchi, S. Haguvara and S. Eguchi, *J. Org. Chem.* 1991, 56, 1535.
- 7 (a) S. Von Niementowski, J. Prakt. Chem. 1895, 51, 564;
 (b) P. Gotthelf and M.T. Bogert, J. Am. Chem. Soc. 1901, 23, 611;
 (c) M.M. Endicott, E. Wick, M.L. Mercury and M. Sherrill, J. Am. Chem. Soc. 1946, 68, 1299.